JRC

NJM2513

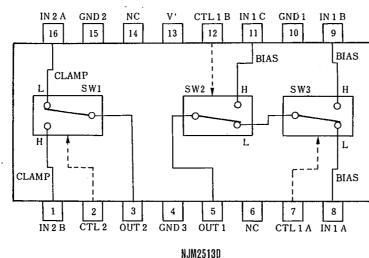
3-INPUT/2-INPUT VIDEO SWITCH

GENERAL DESCRIPTION

The NJM2513 is a switching IC for switching over from one audio or video input signal to another. Internalizing 3 input-1 output, and 2 input-1 output and then each set can be operated independently. Side of 2 input-1 output are "Clamp type", and they can be operated while setting DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating voltage 4.75 to 13V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

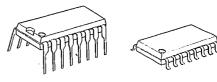
FEATURES

- Operating Voltage $(+4.75V \sim +13V)$
- 3 Input-1 Output/2 Input-1 output
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency 10MHz(2VP-P Input)
- Package Outline DIP16, DMP16
- Bipolar Technology


RECOMMENDED OPERATING CONDITION

Operating Voltage
V⁺
4.75~13.0V

APPLICATIONS


BLOCK DIAGRAM

• VCR, Video Camera, AV-TV, Video Disk Player.

NJM25130 NJM2513M

PACKAGE OUTLINE

NJM2513D

NJM2513M

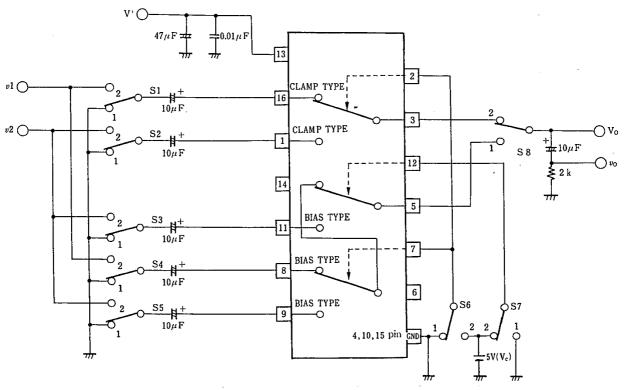
-New Japan Radio Co.,Ltd.-

NJM2513

MAXIMUM RATINGS (Ta=25℃) PARAMETER SYMBOL RATINGS UNIT V Supply Voltage 14 ٧ PD (DIP16) 700 Power Dissipation mW (DMP16) 350 m₩ Topr -40~+85 °C Operating Temperature Range Tstg -40~+125 °C Storage Temperature Range

ELECTRICAL CHARACTERISTICS

$(V^+=5V, Ta=25^{\circ}C)$


SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
lccl	V+=5V (Notel)	6.7	9.7	12.7	mA
lcc2	V ⁺ =9V (Notel)	8.6	12.3	16.0	mA
Gv	$V_1 = 100 \text{kHz}, 2 V_{P-P}, V_0 / V_1$	-0.6	-0.1	+0.4	dB
GF	$V_1 = 2V_{P-P}, V_0(10MHz)/V_0(100kHz)$	-1.0	0	+1.0	dB
DG	$V_1 = 2V_{P-P}$, Standerd Staircase Signal		0.3	_	%
DP	$V_1 = 2V_{P-P}$, Standerd Staircase Signal	. -	0.3	_	deg
Vosl	(Note2)	-15	0	+15	mV
Vos2	(Note3)	-25	0	+25	mν
СТ	$V_1 = 2V_{P-P}, 4.43MHz, V_0/V_1$		75		dB
Vсн	All inside Switches ON	2.5		—	v v
VCL.	All inside Switches OFF	-	_	1.0	v
	lcc1 lcc2 Gv GF DG DP Vos1 Vos2 CT Vc11	Icc1 $V^+=5V$ (Note1)Icc2 $V^+=9V$ (Note1)Gv $V_1 = 100kHz, 2V_{P-P}, V_0/V_1$ GF $V_1 = 2V_{P-P}, V_0(10MHz)/V_0(100kHz)$ DG $V_1 = 2V_{P-P}, Standerd Staircase SignalDPV_1 = 2V_{P-P}, Standerd Staircase SignalVos1(Note2)Vos2(Note3)CTV_1 = 2V_{P-P}, 4.43MHz, V_0/V_1Vc11All inside Switches ON$	Icc1 V*=5V (Note1) 6.7 Icc2 V*=9V (Note1) 8.6 Gv V1 = 100kHz, 2VP-P, V0/V1 -0.6 GF V1 = 2VP-P, V0 (10MHz)/V0 (100kHz) -1.0 DG V1 = 2VP-P, Standerd Staircase Signal Vos1 (Note2) -15 Vos2 (Note3) -25 CT V1 = 2VP-P, 4.43MHz, V0/V1 Vc11 All inside Switches ON 2.5	Icc1 $V^+=5V$ (Note1)6.79.7Icc2 $V^+=9V$ (Note1)8.612.3Gv $V_1 = 100 \text{kHz}, 2V_{P-P}, V_0/V_1$ -0.6 -0.1 GF $V_1 = 2V_{P-P}, V_0(10MHz)/V_0(100 \text{kHz})$ -1.0 0DG $V_1 = 2V_{P-P}, \text{ Standerd Staircase Signal}$ $ 0.3$ DP $V_1 = 2V_{P-P}, \text{ Standerd Staircase Signal}$ $ 0.3$ Vos1(Note2) -15 0Vos2(Note3) -25 0CT $V_1 = 2V_{P-P}, 4.43 \text{MHz}, V_0/V_1$ $ -75$ Vc11All inside Switches ON 2.5 $-$	Icc1 $V^+=5V$ (Note1)6.79.712.7Icc2 $V^+=9V$ (Note1)8.612.316.0Gv $V_1 = 100 \text{kHz}, 2V_{P-P}, V_O/V_1$ -0.6 -0.1 $+0.4$ GF $V_1 = 2V_{P-P}, V_O(10MHz)/V_O(100kHz)$ -1.0 0 $+1.0$ DG $V_1 = 2V_{P-P}, \text{ Standerd Staircase Signal}$ $ 0.3$ $-$ DP $V_1 = 2V_{P-P}, \text{ Standerd Staircase Signal}$ $ 0.3$ $-$ Vos1(Note2) -15 0 $+15$ Vos2(Note3) -25 0 $+25$ CT $V_1 = 2V_{P-P}, 4.43 \text{MHz}, V_O/V_1$ $ -75$ $-$ Vc11All inside Switches ON 2.5 $ -$

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=1, S8=2, S7=1, $S6=1\rightarrow 2$ Measure the output DC voltage difference

(Note3) S1=S2=S3=S4=S5=1, S8=1, S7=1, $S6=1 \rightarrow 2$ (S6=1, $S7=1 \rightarrow 2$) Measure the output DC voltage difference

TEST CIRCUIT

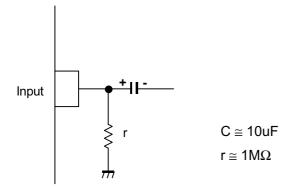
This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

-New Japan Radio Co.,Ltd.

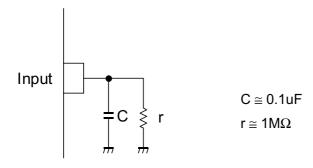
NJM2513

TERMINAL EXPLANATION

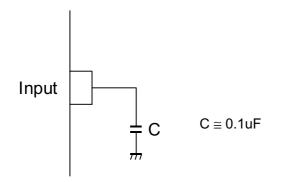
'IN NO.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT	
8 9 11	IN 1 A IN 1 B IN 1 C (Input)	$\begin{array}{c} 2.5V\\ \left(\frac{1}{2}V^{+}\right)\end{array}$	IN 0 15k 15k 2.5V 777 777 2.5V	
16 1	IN 2 A IN 2 B (Input)			
7 12 2	CTL 1 A CTL 1 B CTL 2 (Switching)		2.3V 7/77 7/7 7/7 7/7 7/7 7/7 7/7 7/7	
5	OUT 1 (Output)	$1.8V \\ \left(\frac{1}{2}V^{+}-0.7\right)$		
3	OUT 2 (Output)	$\left(\frac{3}{10}V^+ - 0.7\right)$		
13	V+	5 V		
15 4 10	GND 1 GND 2 GND 3			


-New Japan Radio Co.,Ltd.-

-5-329


5

■APPLICATION


This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires 0.1uF capacitor between INPUT and GND, $1M\Omega$ resistance between INPUT and GND for clamp type input at mute mode.

This IC requires 0.1uF capacitor between INPUT and GND for bias type input at mute mode.

[CAUTION]
The specifications on this databook are only
given for information, without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.

-New Japan Radio Co.,Ltd: